Tag Archives: Machinist

Machinist Toolbox – What To Buy?

Are you new to the Machining industry or considering a career in this field of manufacturing? A toolbox is one of the first things that you should buy. It’s where you will keep most if not all of your tools, personal inspection equipment, and books/manuals such as the Machinery’s handbook.

Kennedy tool boxes are well known in the Machining industry because they are well built and have been around for 100 years now. If you’re looking for a tool box that is made in the U.S.A., a Kennedy is the way to go for a new Machinist, whether it’s a top box, or a bottom as well. These boxes are made specifically for Machinists, so the length, width, and depth of each drawer is designed for specific tools, allowing you to easily organize your set-up; and we all know that time is money when running CNC machines.

Kennedy Top Box
Kennedy Top Box

If you’re on a budget, a standard tool box can work just about as well. It may not be built to hold your machining tools as well, but you can find good deals on sturdy boxes that will save you money for buying even more tools!

There are also some Machinist knock-off tool boxes are on Amazon for a fraction of the cost, such as this 11 Drawer Roller Box. Due to its low price, it won’t have the same quality as say a Kennedy, but some of the same features are there with a similar layout. Like most anything these days, you generally get what you pay for. For something such as a tool box, if you’re a rookie machinist, then a cheap box may work just fine.

What To Look For?

If you are just starting your CNC Machinist classes at the local Tech school and had to buy a tool box without doing any research then it probably won’t make much difference at first. After going to school or working for some time, though you’ll realize what you want in a tool box, and even that may change after being on the job for years.

Size is the biggest factor when purchasing a new tool box. Obviously if space is unlimited and you don’t plan on transporting it often or ever, then the bigger the better. If you buy a big box right away then you won’t have to upgrade right after buying a handful of new tools. On the flip side, if you don’t have many tools then you’ll be pushing around a lot of dead weight if you move around the shop on a weekly or daily basis.

If you have a chance to look at and test out tool boxes in person, I would suggest looking at and opening the drawers to see how smooth they are. Ball-bearing drawers slide out nicely compared to the conventional slides. This feature isn’t necessarily a deal breaker, but it’s always nice to have things that perform better.

Castors are the wheels used on tool boxes and are another feature that should be considered when doing research. Putting a lot of heavy tools in your box will put more strain on the castors, so it’s good to have big and sturdy castors.

If you still can’t figure out which one to buy, there’s nothing wrong with having one, two, or three boxes to choose from.

A quick tip on how to prevent tools from getting nicked and scratched up after constant opening and closing of drawers; tape a sheet of felt or lay a thin rubber mat down in each drawer for padding and to help prevent everything from sliding around.

Tool Runout vs. Tool Deflection – What Are The Differences?

There’s a reason tight tolerance parts cost more time. Yes, I use the word “Cost” because time is money, and it can take a considerable more time to set-up and run a part if the tolerances are closed up. Tool run-out and tool deflection can both be an issue when trying to hold a close tolerance. However, they are not the same thing.

Run-out

Tool run-out is how far off of the rotating axis the tool is. While in the machine, you want to check just above the bottom of the tool, as that will give you the most accurate reading and is almost always worse than the top of the tool where it goes in the holder. To check it, put an indicator on a vice and touch the tool off of it. Zero it out and then rotate the tool (usually in a counter-clockwise rotation so it doesn’t catch the cutting edge). If there’s run-out, one side of the tool will give you a different reading on the indicator.

Before we go any further, let me explain what run-out actually does when machining a part with a tool that has it. If an end mill or a drill has excessive run-out, the side (or flute) that is bigger will do more cutting. If you’re milling out a hole with an end mill, it will cause the hole to go over-size if all of your program and offset numbers are right. A drill can also go oversize, as well as drill an oblong hole.

Now lets take a look at what causes a tool to have run-out. A brand new and unused tool can have run-out. Why? Not all tools are made the same, and if you buy cheap tooling, there’s a better chance that it was made with the same precision as a higher quality tool.

Not only can the tool be at fault, but a defective tool holder can cause run-out as well. On the other hand, you may check the tool while in the spindle and see that their is run-out, but certain tools (such as a reamer or drill) will allow you to slightly move it without removing it. This can often get rid of many run-out problems with longer tools.

Tool Deflection

Tool deflection should not be confused with run-out. It is a common term used when side milling with an end mill, and it causes a taper in the part feature that is being milled.

Take this as an example; you’re milling the outside profile of a part (2x2x2.25″) that has blueprint dimensions of 1.950″ wide, long, and 2.000″ tall. Using a 3/4″ end mill with greater than 2 inches of flute length, you mill around the part once. The top of the part is 1.951 all the way around, but the bottom is upwards of 1.954″. This is because the end mill is too long and was ‘deflecting’ because it couldn’t handle the pressure of removing all of that material.

That’s the most simplistic scenario of tool deflection. So, how do I combat this? Great question, and there’s quite a few ways to make sure your part is square, perpendicular, and/or parallel.

First of all, how deep of a cut are you taking? If you’re drilling a 1/4″ hole that’s .375″ thru, you don’t need a jobber drill with 4″ of flute length. When milling, a bigger diameter tool will be stronger and resist deflection better. If you’re milling a feature that is .400″ deep, using an end mill with 1/2″ flute length will achieve the best results. One last thing on tool length is that you should have the tool as short as possible in the holder. Do not clamp on the flutes, but if you choke up on the tool, this will also help prevent deflection.

Feeds and speeds. I’ve said it before, and I’ll continue to say it. Having the right RPM and feedrate for your tools is one of the major keys to success in the Machining industry. Even if the surface foot is close, having a high feedrate will naturally produce more tool pressure and in turn cause deflection.

Slowing down the feedrate can help, but in the end, you may have to take multiple passes to make a feature square, especially if you’re profiling out a part with an end mill.

 

What Is Lean Manufacturing?

Any company in the machining industry has to incorporate Lean Manufacturing in their business and process plan to survive these days. To put it in simple terms, lean manufacturing is the production practice of being efficient by eliminating any ‘waste’ in the process plan. Though they may not call it this, all companies strive to be lean because it makes their customers happy, and ultimately, more money.

Although there was seven original “Wastes” involved in lean manufacturing, we’ll look at eight of the most common ones in a machine shop. Most of them are simple, but it can take a lot of work and orchestrating to implement them all. There is no perfect company that has it all figured out. There is always room for improvement, which is why employers seek new ways to lean out their manufacturing process. The acronym for this practice is “DOWNTIME”. Now you could just look this term up on wikipedia, but it won’t give you a real perspective or example of what it means. Those are just general illustrations in the manufacturing industry, but working in a machine shop may produce different scenarios.

Defective Production:

If bad parts are made, it takes more time to either re-work it or make another one. More material, more machine time, more tooling wear, which can add up to almost double the cost of a part. The machine shop pays for this and not the customer, and that is why it is on the list of big “wastes” that companies try to eliminate. We are only human, so mistakes do happen occasionally, but the goal is to decrease the percent of defective parts.

Overproduction:

I believe that this one can go either way, but if space is expensive, then overproduction is definitely considered a waste. If you make extra parts for a customer, it costs more time to make them, and the excess supply of parts costs more to store because it takes up more space in between machining and shipping, plus the time it will take for the customer to order more. If something happens to the customer and they discontinued that part or went to a different vendor, your extra inventory has now turned into a complete waste of money.

Waiting:

There’s two ways you can look at this; the parts that are waiting, or the machinist that is waiting. This happens whenever you have stock waiting to be cut or for operations on a machine. There is usually a waiting time in between finishing the parts and shipping. This takes up valuable time, as well as space. Although it may not seem like a big difference if parts are waiting an extra day or two to be worked on or shipped, the quicker you get the parts out your door, the quicker you can move on to another part/order.

Non-used Employee Talent:What Is Lean Manufacturing

This should be an easy, but too many employers miss it. If you have an employee that is skilled multi-axis machining and/or programming, putting them on a grinder or running simple mill parts is a waste of talent. Even if they need a little more training, it’s much more efficient to move that employee to the more complicated work instead of hiring another person, which you may have to train-in anyway.

Transportation:

Transportation is all of the unneeded movements of parts and materials. The shortest route from point A to point B is a straight line, anything else is wasting time. While it’s not always possible to do this in a machine shop, the shorter the distance parts and material have to travel the better.

Inventory:

This is similar to overproduction because having too big of an inventory takes up space and takes more machine time to run. If you’re making more parts than the order requires, it is considered wasteful inventory.

Motion:

Much like wasteful transportation of parts, a machinist should reduce wasteful motion as much as possible to be efficient. If you’re setting up a job, all the tools should be set-up and ready to go or on the workbench next to the machine. This can be done during cycle time of the previous job to save time. When loading and unloading parts in the machine during production, as well as part deburring, having everything close by or within reaching distance will reduce motion and save time in the long run.

Excessive Processing:

Like mentioned before, time is the biggest money breaker or maker, and if you’re spending too much time trying to perfect parts or orders when it is not needed, then you’re wasting time. If you have wide open tolerances on some or most of the part features, spending extra set-up and/or cycle time to try and get it right at the nominal number is waste. As long as all of the parts are within tolerance of the blueprint, they’re good. If the part doesn’t go together during assembly or function properly, it’s that customer’s job to fix the print, not the machine shop’s job.

Now, how can YOU as a Machinist benefit from all of this? This can help boost your reputation at your current job, as well as your resume. The harder you work at being more efficient, the more your boss/foreman will notice. This may result in better raises, a promotion, or benefits in various ways.

Although not all of these factors directly relate to you, suggesting them to higher authority may give you better recognition in the long run.

CNC Programmer Salary – How Much Am I Worth?

Are you good at programming on CAM/CAD software? Programmers are in high demand in most areas around the United States. The salary, or wage, for CNC programmers depends on a couple things. There’s a wide spectrum of programmers because not everyone has the same experience. However, just because you have 10 years of programming ‘experience’ doesn’t mean you’re worth more than the other guy that gas only 3 years. More on this later…

Master The Systems

While a programmer with less years on the job can get paid more, the more you know the better. Having 8 years of experience on Mastercam is great, but if you know how to program on Gibbs, Surfcam, as well as multi-axis on CAM systems, you’re worth more to certain companies.

Knowing how to run multiple CAM or CAD systems gives you an edge over the competition if you’re looking for a job because you’ll fit the “requirements” for a lot more companies that are looking for a programmer.

CNC Programmer Salary - How Much Am I Worth
Programming on Mastercam

Even if you haven’t worked with a certain software that a company you want to work for uses, having experience with multiple other systems makes you more versatile, which will making it much easier for them to train you in on their programming software. Every CAM/CAD system is different, but you’re essentially doing the same thing with all of them; programming. If you’re used to being acclimated to a new software, learning how to use one more shouldn’t be an issue.

What’s the Demand?

If there’s no demand in your area for a programmer like you, don’t expect to get a high paying job offer in the near future. Big cities with Machining, such as Houston, Minneapolis, and Ohio have a high demand for any and all kinds of Machinists or Programmers. Finding a job in these areas isn’t too difficult today because the manufacturing demand is high.

If you want to get started as a programmer, you can find easier jobs at shops that will start you at the bottom and work your way up if you only have school experience. It’s not going to be a wealthy salary, but it’s better paying than most operators.

Let’s See Some Numbers

Okay, this is probably the real reason why you’re here… Programmers are usually paid more than machine operators, which is a big reason why so many machinists go to school for programming. Before I throw any digits out there, you should know that these are not set in stone. Every market and area of the country/continent is a little bit different. These numbers are a general starting point to show you what a CNC programmer can make for a living.

If you’re looking for a first just as a programmer, even if you’ve been a machinist for a few years, you’ll probably start towards the bottom of the pay scale. Right now, most full-time programmers start out around the 18-20 dollar an hour mark. It won’t make you rich, but if you’re looking for a good starting job, there’s usually a good amount of room for improvement.

If you look in the classifieds of Job listings, you’ll often see Programmer wanted ads with 3-5 years of experience. With more experience, comes more money (for the most part). The compensation is usually in the low-mid 20s for wages, and if you’re working overtime like a lot of shops do these days, that could be a pretty decent paycheck. However, like mentioned before, not only do you have to have the years of experience qualification, but also the right kind of experience as far as programming on CAM/CAD systems.

For you programming masters out there, high 20s and into the $30+/Hr mark is not uncommon. Some machine shops just need a lead programmer that can do it all, and to some companies, that person may be worth 35 bucks an hour.

Lathe and basic mill programmers are usually at the bottom of spectrum because they require the least amount of skill and training. The high-end jobs are usually multi-axis or special milling programmers that require a lot more training.

Once again, these salaries aren’t going to make you a millionaire. But that’s not why you chose CNC Manufacturing as a career, otherwise you would have gone a different and probably less interesting route.

If you have any questions, feel free to post a comment…

Do CNC Machinists Need To Go To School?

So you’ve decided that you want to be a full-time Machinist for a career, but you’re not sure if you can find a job without going to school… If you haven’t already, check out my article on CNC machinist training.

While many career’s start right after or during college these days, there are a lot of jobs that don’t necessarily require schooling. Years ago you could start out as a shop helper during weeknights while going to high school, but now it seems like you need take at least two years of post-secondary education to get any ‘real job’.

To answer the question plainly, no, you don’t NEED to go to school to be a full-time cnc machinist. There’s plenty of machinists that didn’t go to school and are doing well. In fact, there’s some guys that never took anything past high and ended up owning their own machine shop.

With that said, it may be hard to find a job in the manufacturing industry with little to no experience. In this case, the old saying, “It pays to know” couldn’t be more true. If you have a friend or a friend of a parent works in a local machine shop, ask them if there are any openings at that shop. If they don’t, that friend will usually suggest another shop or be on the lookout if they know you well enough.Do CNC Machinists Need To Go To School

Going to your local Tech school for Machining classes will definitely give you a head start, or an accelerated start if you just graduated from high school and already work in a manufacturing shop. You will be able learn all of your basic machining 101 knowledge, and then work your way up from there until you can program and make your own parts.

There’s shops out there that will start from scratch if they find a young and motivated worker, but the learning process will usually be more gradual over a longer period of time. Unfortunately, those can be hard to come by, and the wages probably won’t be enough to live off of.

One of the biggest problems is that most companies want someone with several years of machining experience, and don’t want to spend their time trying to train someone in, hoping that they will weed out the ill-performing machinists. While they may work some of the time, there’s no real way to tell how good of a machinist someone is until you give them work to do. You can take someone with 1-2 years of schooling and a year of on the job experience, and they might do better than another machinist that has been in the industry for 10+ years.

In the end, it’s up to YOU to decide what to do. The smartest route would be starting right off the bat when you graduate high school and going to a Tech school for machining, and possibly finding a small shop to work for at the same time. However, not everyone is young enough to do that. For those that are older and need a steady full-time job, there are people that take machining classes during the day, and go do to work at night. It can be gruesome, but if you work hard at it and really think that you want to pursue this great career, I encourage you to put the hammer down and quit slacking off!

Good luck!

Absolute Vs. Incremental – CNC Programming

To be able to write and edit programs, you must know when and how to use Absolute and Incremental modes effectively. More programs are in absolute, but there are times when it’s easier to use incremental.

There are major differences between to the two, so if you don’t know how each one works, don’t start programming until you read this. Mixing the two up can and will cause a disaster

What Is Absolute?

When programming in absolute, all of your coordinates and movement values will come from the origin (0,0) point. If you want to be in Absolute, the G-code that defines this is G90, which is a modal code.

Absolute Programming
Absolute Dimensioning

Most CNC programs are written in absolute because it is easier to understand. Why is it easier, you ask? Because if you have a lot of coordinates to move, you always know where the center of the tool is in relation to the work offset.

What Is Incremental?

How is Incremental different from Absolute? Well, instead of all of your coordinates/numbers coming from one location (0,0 offset), each move is the distance from your current location. That means if you want 2 holes that are 4.000″ apart and start 4.000″ from your start location, you would use X4.0 twice, as opposed to using X4.0 and then X8.0 for the second hole if you were to use Absolute. G91 is the G-code that puts you in Incremental mode, and it is modal as well.

Incremental Programming
Incremental Dimensioning

Which one is better? That depends on what you’re doing, but 99% of the time Absolute programming will be easier. If you’re hand-programming, it may require a little more math, depending on how the blueprint is laid out, but it will be much easier to go back and read or edit the program if there is a mistake.

In G90 (absolute), no matter where your tool is, you can always go move to a certain location by inputting those coordinates, such as X1.625Y-.875. However, if you’re in G91, you can’t just punch those numbers in if your tool is somewhere other than the origin. If you put in those coordinates, your tool will move a positive 1.625 in the X direction, and a negative .875 in the Y direction from where it currently is.

So, how do you get to that location in G91? You have to know where you tool is, then add or subtract the distance of the location from where it is relative to the origin. You see now why incremental can be very confusing? If you’re in G91 and have dozens, or even hundreds of moves, one mistake in the middle of the program and all of the following numbers will be skewed because they all come from the previous location.

On the flip side, you can alternate between G90 and G91. If it’s easier to use incremental for a few moves, use G91, then when you want to go back to absolute, just put a G90 on the line of the next move.

Machinist Square – What Shape Are Your Parts?

If you’re a new or home machinist, learning how to “square your parts” is one of the first things you should learn. There’s quite a few common tools that a machinist should have in their toolbox, and a Machinist Square is one of them.

Learning how to machine a part on a manual milling machine should be one of the first things in school. Eventually you will need to make parts with tighter tolerances, and flatness/perpendicularity are a big part of it. If your parts are trapezoidal because of tool deflection, I can guarantee that your parts will be rejected.

Machinist Square Set
Machinist Square Set

A good machinist square should be perpendicular/flat within .0002″ tolerance, and should be periodically calibrated so that it stays within spec. However, some squares have a different rating that depends on how accurate they are. A & B are the most common, with B being for the average consumer that doesn’t need extremely close tolerance parts.

A is the higher grade, and while it will cost more, it is what you will want for machining. Don’t skimp out and get the cheapest one you can find. You get what you pay for, and in CNC manufacturing these days, you want every advantage possible.

If you drop it and can see a dent or bend in it, it’s worthless. That’s why it’s critical that you take care of not only a machinist square, but all of your machining tools.

Click Here To Buy My Machinist Square!

CNC Machine Operator Training

A CNC Machine Operator is someone that runs production parts in a machine shop. They load and sort parts on a CNC machine, whether it be a milling center, turning center, or other computer-controlled machine.

There are many jobs available for cnc operators because schooling is not necessarily required. A machine operator can get trained in by the CNC Machinist or shop foreman on how to do the required tasks. Any school that has a Machine manufacturing program will teach you how to run machines, make and inspect parts, and how to do well in the industry.

CNC Machinist Salary

CNC Machinist salaries can vary greatly, depending on what your job role is, who you’re working for, and how many hours you’re working. A lot of companies require overtime, so you may be working 50, 60, and possibly 70 hours a week at certain jobs. Not all of them are this way, but you will be making a considerably higher amount by working overtime (time and a half)

New CNC Machinists start out around 30,000-40,000 a year. While this is pretty good pay after finishing school, it can be rather difficult to support a family with just this job.

A more experienced machinist with a higher role will make more due to the fact that they know how to do more, and can often run a shift as a shop foreman. A typical experienced CNC machinist will make about 50-60,000 a year, with a possibility of more with more overtime hours.

Machinist Calc Pro – The CNC Machinists Calculator

Are you looking for the latest technology in manufacturing? Tools, parts, and machines are advancing rapidly, and the speed of things have multiply in a matter of years. The Machinist Calc Pro is a perfect addition to your tool lineup, whether you’re an engineer, programmer, or CNC Machinist.

Trigonometry Math?

Struggle with right triangle math? Basic trig is a must in the Machining industry for calculating angles and part lengths. Fortunately, the Calc Pro can solve the equations for you. Uses trig functions, and you can operate with U.S. standard and metric units, saving you time and headaches.

Speeds & Feeds

If you want to succeed in Machining, efficiency is key. And to be efficient, you must have the best possible feeds and speeds set in every part program. If you don’t, you’re either wasting time, or you’re breaking tools too often (which is also wasting time). The Machinist Calculator automatically calculates the RPM speeds, cutting speeds, feed rate, and chip load. All you have to do is plug in the material, tool, machine info.

Advanced Drill And Thread Size Tables

No more need to look for your drill and thread charts. They’re right on the calculator, saving even more time.

Bolt Pattern Layouts

Have a hard time with bolt patterns? If you need to quickly trig out a bolt circle, just punch in the start angle, diameter, offsets, and number of bolts. It gives you all the x and y coordinates you need!

If you’re programming parts and want to save time, which equates to money, this calculator should be the next thing on your list of tools to buy. It’s very affordable, and you won’t need to dig through pages and pages of the machinist handbook to find drill sizes.

Click Here To Buy The Machinist Calc Pro!